Tri- μ -iodo-hexachloro-triaquo-trirhenat(III)-3- bzw. 2,5-hydrat [Re₃(μ -I)₃Cl₆(H₂O)₃]·3H₂O und [Re₃(μ -I)₃Cl₆(H₂O)₃]·2,5H₂O*

Bernd Jung und Gerd Meyer

Institut für Anorganische Chemie, Universität Hannover, Callinstr. 9, W–3000 Hannover (FRG)

(Eingegangen am 26. Juni 1991)

Abstract

For the first time two mixed ligand (heteroleptic) rhenium(III) iodide-chloride hydrates, ReICl₂·2H₂O (1) and ReICl₂·1 $\frac{1}{8}$ H₂O (2) have been synthesized from aqueous solutions under slightly different conditions: (1) at ambient temperature and (2) at temperatures around 100 °C. The crystal structures were determined from four-circle diffractometer data: (1): orthorhombic, *Iba2*; a=2502.4(2) pm; b=1313.6(1) pm; c=1188.6(1) pm; Z=24; R=0.049; $R_w=0.038$; (2): monoclinic, $P2_1/c$; a=857.02(6) pm; b=1438.6(1)pm; c=2990.6(2) pm; $\beta=93.08(1)^\circ$; Z=24; R=0.046; $R_w=0.034$. Both hydrates contain trimeric molecules [Re₃(μ -I)₃^{1,b}Cl₆^{o,t}(H₂O)₃^{1,t}] which are connected to each other via water molecules by hydrogen bonding. According to high temperature powder X-ray diffraction, data (1) transforms to (2) by dehydration at 110 °C. Infrared spectra were recorded and are discussed in connection with the crystallographic results.

Zusammenfassung

Die ersten beiden heteroleptischen Rhenium(III)-halogenidhydrate, $\operatorname{ReICl_2} \cdot 2H_2O(1)$ und $\operatorname{ReICl_2} \cdot 1_{\$}^{*}H_2O(2)$ wurden aus wäßrigen Lösungen unter geringfügig unterschiedlichen Bedingungen erhalten: (1) bei Raumtemperatur, (2) bei etwa 100 °C. Die Kristallstrukturen wurden aus Vierkreis-Diffraktometerdaten bestimmt: (1) orthorhombisch, *Iba2*; a=2502,4(2) pm; b=1313,6(1) pm; c=1188,6(1) pm; Z=24; R=0,049; $R_w=0,038$; (2) monoklin, $P2_1/c$; a=857,02(6) pm; b=1438,6(1) pm; c=2990,6(2) pm; $\beta=93,08(1)^\circ$; Z=24; R=0,046; $R_w=0,034$. Beide Hydrate enthalten trimere Moleküle [$\operatorname{Re}_3(\mu-I)_3^{ib}Cl_6^{\circ,t}(H_2O)_3^{i,t}$], die über Wassermoleküle durch Wasserstoffbrückenbindungen miteinander verknüpft sind. Nach Ausweis von Hochtemperatur-Röntgenaufnahmen an Pulverproben wandelt sich (1) bei 110 °C unter Wasserabgabe in (2) um. Infrarotspektren wurden aufgenommen und werden im Zusammenhang mit den kristallographischen Ergebnissen diskutiert.

1. Einleitung

Schon Wrigge und Biltz [1] konnten zeigen, daß beim "Liegenlassen" von violettem $\text{ReCl}_3 \equiv (\text{Re}_3 \text{Cl}_{6/1} \text{Cl}_{6/2})$ an der Luft ein rosenrotes Dihydrat

^{*}Herrn Professor W. Bronger und Herrn Professor Ch. J. Raub zu ihren 60. Geburtstagen gewidmet.

"ReCl₃·2H₂O" entsteht. Über die Kristallstruktur dieses Hydrates ist nichts bekannt, jedoch wird auch hier, ähnlich wie in dem 4[‡]₃-Hydrat ReCl₃· $4^{±}_{3}H_{2}O \equiv [Re_{3}Cl_{9}(H_{2}O)_{3}] \cdot 10H_{2}O$ [2], die molekulare Baugruppe [Re₃Cl₉(H₂O)₃] vorliegen. Ein wasserärmeres Chlorid–Hydrat, dem die Zusammensetzung [Re₃Cl₉(H₂O)₃]·2H₂O zugesprochen worden war [3] (was mit $\frac{5}{3}$ H₂O pro Formeleinheit ReCl₃ etwa dem Dihydrat "ReCl₃·2H₂O" entsprochen hätte), erweist sich nach neueren Untersuchungen als NMe₄[Re₃Cl₁₀(H₂O)₂]·2H₂O [4].

Über die Existenz von Hydraten des Re(III)-bromids und -iodids ist bislang wenig bekannt. Lediglich das Bromid–Hydrat ReBr₃· ${}^{2}_{3}H_{2}O \equiv$ [Re₃Br₉(H₂O)]·H₂O [5] konnte anhand von Einkristalldaten charakterisiert werden (isotyp kristallisiert [Re₃(μ -Cl)₃Br₆(H₂O)]·H₂O [6]). Allerdings sind hier keine isolierten Baugruppen [Re₃Br₉(H₂O)₃] strukturbestimmend: vielmehr werden die Baugruppen [Re₃Br₉(H₂O)] über zwei Kanten gemäß ${}^{1}_{0}$ [Re₃(μ -Br) ${}^{1,b}_{3/1}$ Br ${}^{o,t}_{4/2}$ Br ${}^{(o,t-i,t)}_{4/2}$ (H₂O)^{i,t}] zu Zickzack-Ketten verknüpft.

Nun gelang die Synthese zweier gemischter Halogenid–Hydrate des dreiwertigen Rheniums, $\text{ReICl}_2 \cdot 2\text{H}_2\text{O} \equiv [\text{Re}_3(\mu\text{-I})_3\text{Cl}_6(\text{H}_2\text{O})_3] \cdot 3\text{H}_2\text{O}$ (1) und $\text{ReICl}_2 \cdot 1_6^{\text{E}}\text{H}_2\text{O} \equiv [\text{Re}_3(\mu\text{-I})_3\text{Cl}_6(\text{H}_2\text{O})_3] \cdot 2,5\text{H}_2\text{O}$ (2), die in ihrem Verhältnis von Rhenium:Halogen:H₂O dem Dihydrat "ReCl₃ $\cdot 2\text{H}_2\text{O}$ " sehr nahe kommen bzw. entsprechen.

TABELLE 1

$[\operatorname{Re}_{3}(\mu-I)_{3}\operatorname{Cl}_{6}(H_{2}O)_{3}]\cdot 3H_{2}O$	(1):	Kristallographische	Daten	und	ihre	Bestimmung
--	------	---------------------	-------	-----	------	------------

Guinier-Daten $[8, 9]$ a = 2502.4(2)	Diffraktometer-Daten a = 2503.3(4)	
b = 1313,6(1)	b = 1314,6(3)	
c = 1188, 6(1)	c = 1189,9(1)	
$V_{\rm m} = 294, 2(6)$	$V_{\rm m} = 294.8$	
orthorhombisch		
<i>Iba2</i> (Nr. 45); $Z = 8$		
Vierkreisdiffraktometer Sie	mens-Stoe AED2; Mo	
$K\alpha$ Strahlung; Graphitmon	ochromator, $\lambda = 71,07$	
pm; $\omega/2\theta$ -scan; "learnt-pro	file"-Methode [10];	
$1,0^{\circ} < \theta < 25^{\circ}; F(000) = 427$	71; $\mu = 230,2 \text{ cm}^{-1}$	
Untergrund, Polarisations- und Lorentz-Faktoren;		
Absorption: Ψ -scan für 20 $g=2\cdot 10^{-5}$	Reflexe; Extinktion:	
15662 Reflexe gemessen,	davon 5153 Reflexe	
symmetrieunabhängig (R_{int} mit $ F_0 > 3\sigma(F_0)$	=0,102); 4676 Reflexe	
Programme SHELX-76 un	d SHELXS-86 [11, 12],	
Streufaktoren nach Cromer und Mann [13];		
direkte Methoden: Re; sukzessive aus Differenz-		
Fourier-Synthesen: I, Cl, O	; "full-matrix-least-	
squares''-Verfeinerung; $R =$	$0,049; R_w = 0,038;$	
$(w = k\sigma(F_0)^{-2}; k = 2,7)$		
	Guinier-Daten [8, 9] a = 2502,4(2) b = 1313,6(1) c = 1188,6(1) $V_m = 294,2(6)$ orthorhombisch Iba2 (Nr. 45); $Z = 8Vierkreisdiffraktometer SieKa Strahlung; Graphitmonepm; \omega/2\theta-scan; "learnt-profinder 1,0° < \theta < 25^{\circ}; F(000) = 427Untergrund, Polarisations-Absorption: \Psi-scan für 20g = 2 \cdot 10^{-5}15662 Reflexe gemessen, für symmetrieunabhängig (R_{int}mit F_0 > 3\sigma(F_0)Programme SHELX-76 unStreufaktoren nach Cromendirekte Methoden: Re; sukFourier-Synthesen: I, Cl, Osquares''-Verfeinerung; R = (w = k\sigma(F_0)^{-2}; k = 2,7)$	

2. Experimentelles

 $[\text{Re}_3(\mu-I)_3\text{Cl}_6(\text{H}_2\text{O})_3] \cdot 3\text{H}_2\text{O}$ (1) und $[\text{Re}_3(\mu-I)_3\text{Cl}_6(\text{H}_2\text{O})_3] \cdot 2,5\text{H}_2\text{O}$ (2) kristallisieren aus salzsauren Lösungen von ReI_3 [7] unter verschiedenen Bedingungen aus. Tiefdunkelbraune Plättchen von (1) erhält man nicht nur beim Eindunsten über festem KOH im Exsikkator bei Raumtemperatur, sondern auch bei dem Versuch, aus einer mit KCl gesättigten Lösung des Triiodids in verd. Salzsäure ein Kaliumsalz zu gewinnen. Das zweite, etwas wasserärmere Halogenid–Hydrat (2) ist bisher nur beim Eindampfen der salzsauren Lösungen auf dem Sandband (ca. 110 °C) erhalten worden. Die ebenfalls tiefdunkelbraunen, aber eher rautenförmigen Einkristalle konnten in einer Grösse bis zu 7 mm Kantenlänge gezüchtet werden.

Einkristalle von (1) und (2) wurden unter trockenem Petroleum ausgewählt, in Markröhrchen eingeschmolzen und zunächst mit Filmmethoden untersucht. Einzelheiten zur Datensammlung und Strukturaufklärung sind den Tabellen 1-6 zu entnehmen.

Temperaturabhängige Guinier–Simon–Aufnahmen [8] (Cu K α_1 : $\lambda = 154,026$ pm; Fa. Enraf–Nonius, FR553) zeigen, daß (1) bei 110 °C unter Verlust eines halben Mols Kristallwasser in das wasserärmere Hydrat (2) übergeht.

Die Aufnahme der Infrarot-Spektren (KBr-Pressling) erfolgte zwischen 4000 und 300 cm⁻¹ mit einem Spektrometer (IR12) der Fa. Beckman.

Atom		y/b	<i>z/c</i>
 Rel	0.31127(2)	0.22988(4)	0 59926*
Re2	0.37857(2)	0.36584(4)	0,59635(9)
Re3	0.39316(2)	0.21261(5)	0.71116(7)
112	0.21122(5)	0.10568(10)	0.96885(12)
113	0.32077(4)	0.05539(8)	0.72331(12)
123	0,47206(4)	0.35722(9)	0,71660(14)
Cl11	0,3352(2)	0,1381(4)	0,4402(4)
Cl12	0,7460(2)	0,2940(3)	0,2336(4)
Cl21	0,9255(2)	0,1750(4)	0,4339(4)
C122	0,3436(2)	0,4712(3)	0,7315(4)
Cl31	0,4462(2)	0,1156(3)	0,5915(4)
C132	0,3626(2)	0,2726(4)	0,8809(3)
01	0,2324(5)	0,1660(10)	0,5428(11)
02	0,4075(5)	0,4763(9)	0,0351(11)
03	0,4439(5)	0,1194(9)	0,8382(10)
OW1	0,5517(5)	0,0975(10)	0,8040(11)
OW2	0,1331(5)	0,1969(10)	0,6433(12)
OW3	0,4193(6)	0,1297(10)	0,0645(11)

TABELLE 2

Lageparameter von (1)

*Zur Definition des Ursprungs wurde die z-Koordinate von Re1 willkürlich fixiert.

TABELLE 3

Atom	U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Re1	199(2)	238(3)	242(3)	6(3)	-1(3)	19(2)
Re2	256(3)	219(3)	257(3)	4(3)	26(3)	1(2)
Re3	216(3)	248(3)	231(3)	0(3)	-4(3)	29(3)
I 12	439(7)	388(7)	350(6)	-87(5)	46(5)	78(6)
I13	316(5)	292(6)	501(7)	109(6)	39(6)	-4(5)
I23	315(6)	402(7)	600(8)	-30(7)	-121(6)	-70(5)
Cl11	389(23)	421(27)	342(22)	-131(20)	-21(18)	29(20)
Cl12	307(19)	422(25)	362(22)	-2(19)	-98(17)	-107(19)
Cl21	473(22)	392(27)	364(23)	-46(20)	183(20)	-39(22)
Cl22	498(24)	287(22)	391(24)	-95(20)	55(20)	40(19)
Cl31	320(19)	326(23)	362(19)	-3(25)	32(23)	83(16)
Cl32	471(26)	545(31)	259(20)	-43(20)	33(18)	186(23)
01	471(77)	318(74)	672(86)	-141(64)	186(66)	128(62)
02	321(68)	449(82)	621(82)	-78(65)	-54(59)	52(61)
03	372(70)	439(83)	352(67)	100(66)	-50(60)	95(61)
OW1	445(81)	432(87)	526(83)	-64(66)	59(64)	131(65)
OW2	428(73)	465(83)	482(72)	-1(59)	20(58)	42(63)
OW3	976(122)	536(102)	569(97)	102(73)	- 166(82)	242(84)

Anisotrope Temperaturfaktoren von (1)^a

 $^{*}U_{ij}$ in pm²; anisotrope Temperaturfaktoren in der Form

 $T_{\rm an} = \exp[-2\pi^2 \{U_{11}h^2(a^*)^2 + \ldots + 2U_{23}klb^*c^* + \ldots\}]$

3. Ergebnisse und Diskussion

In den beiden "ligand-gemischten" (heteroleptischen) Halogenid-Hydraten (1) und (2) liegt die molekulare Baugruppe $[\text{Re}_3(\mu-I)_3\text{Cl}_6(H_2O)_3]$ vor. Die zwölf Koordinationsstellen unterschiedlicher Qualität (L^{i,b}, L^{o,t} und L^{i,t}) und Quantität (3:6:3) sind demnach mit drei verschiedenen Liganden besetzt: die drei Iodid-Ionen sind verbrückend über den Kanten des Rea-Dreieckes angeordnet (L^{i,b}), wobei die Abstände Re-I in beiden Verbindungen annähernd gleich sind ((1), 272, 4(1)-275, 1(1) pm; (2), 272, 4(1)-275, 2(1)pm). Die sechs Chlorid-Ionen besetzen sämtliche out-of-plane terminal (L^{o,t}: d(Re-Cl) = 229,3(4)-232,5(4) pm; Positionen (1),(0,t)(2).d(Re-Cl) = 227, 2(4) - 232, 1(4) pm). In den in-plane terminal (i,t) Positionen koordinieren schließlich Wassermoleküle ((1), d(Re-O) = 224(1) - 232(1) pm; (2), d(Re-O) = 226(1) - 239(1) pm). Auffällig ist der lange Abstand Re-O4 (239(1) pm) in (2), wenn man ihn mit jenen in den übrigen i,t-Positionen vergleicht, vgl. Tabellen 7 und 8. Auch in den Halogenid-Hydraten ReCl₃·4¹/₂H₂O (222-226 pm) [2] und ReBr₃· $\frac{2}{3}$ H₂O [5] (230 pm) werden kürzere Abstände beobachtet. Die Ursache hierfür ist jedoch nicht in einer statistischen Verteilung von Chlorid und Koordinationswasser auf dieser Position zu suchen, wie dies z.B. in NMe₄[Re₃Cl₁₀(H₂O)₂]·2H₂O [4] und Cs_{1.5}[Re₃(μ -I)₃Cl_{7.5}(H₂O)_{1.5}] [6] der Fall ist, sondern vielmehr in der Wasserstoffbrückenbindung zwischen Koordinations- (O4) und Kristallwasser (OW5) (d(O4-OW5)=274(1) pm),

TABELLE 4

[Re₃(µ-I)₃Cl₆(H₂O)₃]·2,5H₂O (2): Kristallographische Daten und ihre Bestimmung

Gitterkonstanten (pm, grd)	Guinier-Daten [8, 9] a = 857,02(6) b = 1438,6(1) c = 2990,6(2)	Diffraktometer-Daten a = 857,83(8) b = 1441,5(1) c = 2991,1(1)		
	$\beta = 93,08(1)$	$\beta = 93,10(1)$		
Molares Volumen (cm ³ mol ⁻¹)	$V_{\rm m} = 277, 2(5)$	$V_{\rm m} = 278,5$		
Kristallsystem	monoklin			
Raumgruppe	$P2_1/c$ (Nr. 14); $Z=8$			
Datensammlung	Vierkreisdiffraktometer Sie	emens-Stoe AED2; Mo		
	K α Strahlung; Graphitmonochromator, $\lambda = 71,07$			
	pm; ω -scan; 'learnt-profile''-Methode [10];			
	$1,0^{\circ} < \theta < 22,5^{\circ}; F(000) = 4223; \mu = 244,3 \text{ cm}^{-1}$			
Datenkorrekturen	Untergrund, Polarisations- und Lorentz-Faktoren;			
	Absorption: Ψ -scan für 20 $g=10^{-5}$	Reflexe; Extinktion:		
Datenstatistik	10129 Reflexe gemessen, symmetrieunabhängig (R_{int} mit $ F_0 > 2\sigma(F_0)$	davon 4726 Reflexe = 0,043); 4471 Reflexe		
Strukturbestimmung und -verfeinerung	Programme SHELX-76 ur Streufaktoren nach Crome direkte Methoden: Re; suk Fourier-Synthesen: I, Cl, C least-squares"-Verfeinerum $(w=k\sigma(F_0)^{-2}; k=2,6)$	ad SHELXS-86 [11, 12]; r und Mann [13]; zzessive aus Differenz- 0; "block-full-matrix- g; $R=0.046$; $R_w=0.034$;		

so wie dies auch in der dimeren Einheit $\{[\text{Re}_{3}(\mu-\text{Cl})_{3}\text{Br}_{7}(\text{H}_{2}\text{O})_{2}]_{2}\cdot\text{H}_{2}\text{O}\}^{2} - (d(\text{O}-\text{OW}) = 290 \text{ pm}) \text{ in } [\text{Rb}_{2}(\text{H}_{2}\text{O})_{2}][\text{Re}_{3}(\mu-\text{Cl})_{3}\text{Br}_{7}(\text{H}_{2}\text{O})_{2}]_{2}\cdot\text{H}_{2}\text{O}$ [14] ge-funden wird.

Für die Verknüpfung der molekularen Baugruppen $[\text{Re}_3(\mu-I)_3\text{Cl}_6(\text{H}_2\text{O})_3]$ stehen in (1) drei und in (2) zweieinhalb Moleküle Kristallwasser pro Formeleinheit zur Verfügung. In beiden Hydraten sind die molekularen Baugruppen gegeneinander verkippt angeordnet, vgl. Abb. 1, und über Wasserstoffbrückenbindungen in recht unterschiedlicher Weise miteinander verknüpft.

In (1) werden sie durch Wasserstoffbrückenbindungen zwischen den Koordinations-Kristallwassermoleküle Sauerstoffatomen der und (d(O-OW)=274-296(2) pm) zu Schichten parallel (001) verknüpft, so wie dies Abb. 2 andeutet. Zwei derartige "Schichten" werden durch eine Translation um $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ so ineinander überführt, daß sich die Abfolge gleicher "Schichten" nach jeder zweiten wiederholt. Benachbarte "Schichten" sind durch Wasserstoffbrückenbindungen zwischen Kristall- und Koordinationswasser längs [001] verknüpft. Solch eine "Verknüpfungseinheit" über zwei "Schichten", die jeweils auf den Kantenmitten der a- bzw. b-Achse angeordnet sind, zeigt Abb. 3. Die Abstände O3-OW1 und OW1-OW3 (274 und 288 pm bzw. 296 pm) zwischen den Sauerstoffatomen des Koordinations- und Kristallwassers einerseits und zwischen jenen der Kristallwassermoleküle andererseits sind mit den entsprechenden Abständen in [Re₃Cl₉(H₂O)₃]·10H₂O [2] (267–283

TABELLE 5

Lageparameter von (2)

Atom	x/a	y/b	<i>z c</i>
Re1	0,03854(7)	0,67779(5)	0,35623(2)
Re2	0,87323(7)	0,72948(5)	0,41622(2)
Re3	0,14776(7)	0,68638(5)	0,43335(2)
Re4	0,38277(7)	0,17815(5)	0,36599(2)
Re5	0,64093(7)	0,13888(5)	0,33981(2)
Re6	0,56069(7)	0,30248(5)	0,34448(2)
I12	0,7383(1)	0,77450(9)	0,83078(4)
I13	0,6549(1)	0,37115(9)	0,63024(4)
123	0,9796(1)	0,76021(9)	0,00412(4)
I45	0,8545(1)	0,26953(9)	0,31696(4)
I46	0,2785(1)	0,35589(9)	0,37411(4)
156	0,5450(1)	0,00770(9)	0,63976(4)
Cl11	0,8804(5)	0,1816(3)	0,6723(2)
Cl12	0,9701(5)	0,5232(3)	0,3545(1)
Cl21	0,7506(5)	0,5919(3)	0,4315(1)
Cl22	0,9010(5)	0,8886(3)	0,4088(2)
Cl31	0,1198(5)	0,9633(3)	0,9558(1)
Cl32	0,7356(5)	0,1687(3)	0,5673(1)
Cl41	0,7702(5)	0,6654(3)	0,2001(1)
Cl42	0,4370(5)	0,1756(3)	0,4425(1)
Cl51	0,5823(5)	0,3901(3)	0,7644(1)
Cl52	0,2245(5)	0,6235(3)	0,0914(1)
Cl61	0,3227(5)	0,8432(3)	0,0871(1)
Cl62	0,5306(5)	0,6722(3)	0,7289(1)
01	0,9310(14)	0,3597(9)	0,7175(4)
02	0,6428(13)	0,7839(9)	0,4388(4)
03	0,3772(13)	0,6730(9)	0,4820(4)
04	0,1516(12)	0,1289(9)	0,3917(4)
O 5	0,1696(13)	0,5302(8)	0,1735(4)
06	0,3806(12)	0,5453(7)	0,6666(4)
OW1	0,6157(13)	0,9611(8)	0,4747(4)
OW2	0,1090(16)	0,0426(9)	0,7546(4)
OW3	0,7636(16)	0,4718(9)	0,2548(4)
OW4	0,8816(15)	0,5246(9)	0,0323(5)
OW5	0,5	0	0

pm) und $[Re_3Br_9(H_2O)] \cdot H_2O$ [5] (276 pm) durchaus vergleichbar, wenn auch geringfügig länger.

In (2) sind zwei symmetrieunabhängige Baugruppen $[\text{Re}_3(\mu-I)_3\text{Cl}_6(\text{H}_2\text{O})_3]$ vorhanden, wobei die Ebenen der planaren Teileinheiten $[\text{Re}_3(\mu-I)_3(\text{H}_2\text{O})_3]$ in unterschiedlichen kristallographischen Höhen senkrecht zueinander stehen, vgl. Abb. 1(b) und 4. Hieraus ergibt sich auch, daß die Moleküle durch Wasserstoffbrückenbindungen zwischen Koordinations- und Kristallwasser nach Art einer Spirale längs [100] verknüpft sind, vgl. Abb. 5. Dabei sind diese Spiralen so in der Elementarzelle angeordnet, vgl. Abb. 4, daß symmetrieäquivalente Cluster innerhalb der Spiralen durch die Inversionszentren,

TABELLE 6

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
	991(4)	202(4)	109(4)	11(2)	00(0)	11/0)
De2	109(2)	293(4)	190(4)	5(2)	33(3) 97(9)	-11(3)
Do2	205(3)	203(4)	229(4)	-0(3)	27(3)	0(3)
Ded	203(3)	201(4)	200(4)	1(3)	17(3)	13(3)
De5	204(3)	300(4)	231(4)	1(3)	33(3)	-11(3)
Def	207(3)	202(4)	229(4)	8(3) 0(2)	24(3)	16(3)
110	219(3) 202(6)	448(4) 476(8)	224(4)	0(3)	17(3)	3(3)
116	203(0)	4(0(0)	280(0)	-17(6)	-51(5)	-18(6)
113	204(0)	440(7)	365(7)	-46(6)	78(5)	21(5)
120 145	309(7)	409(8)	227(6)	55(6) 94(6)	34(5)	-54(6)
140	209(0)	388(7)	376(7)	34(6)	77(5)	- 16(5)
140	300(6)	344(7)	447(7)	-48(6)	81(5)	58(5)
156	350(7)	293(6)	371(7)	22(5)	26(5)	-40(5)
CIT	383(26)	346(26)	414(28)	102(22)	113(21)	-27(21)
CI12	301(24)	331(26)	345(26)	- 52(20)	9(20)	-37(19)
CI21	300(23)	270(23)	377(26)	20(20)	142(20)	-57(19)
C122	375(26)	302(26)	431(29)	51(21)	-11(21)	-1(20)
CI31	454(27)	312(25)	308(25)	- 85(20)	99(21)	-11(21)
C132	275(23)	281(24)	415(27)	-7(20)	25(20)	2(19)
Cl41	336(24)	419(28)	343(25)	36(21)	-69(20)	-8(20)
C142	389(25)	449(27)	255(23)	31(20)	66(19)	-61(21)
C151	344(24)	427(27)	266(23)	41(20)	43(19)	- 38(20)
C152	293(23)	407(26)	305(24)	- 36(20)	-49(19)	-14(19)
Cl61	419(25)	394(27)	252(23)	10(20)	0(19)	48(20)
C162	380(24)	403(26)	264(23)	72(20)	-42(19)	-20(20)
01	471(78)	526(84)	218(66)	- 16(61)	107(56)	87(64)
02	217(64)	468(82)	588(88)	-14(68)	98(59)	63(57)
03	432(74)	507(84)	208(66)	- 76(58)	-131(55)	27(62)
04	177(60)	575(86)	523(83)	61(67)	98(56)	32(57)
05	434(73)	353(72)	368(74)	35(57)	- 15(58)	-130(58)
06	267(62)	92(56)	655(86)	100(55)	107(57)	- 45(47)
OW1	422(73)	476(79)	347(72)	63(61)	- 15(58)	107(61)
OW2	785(100)	608(94)	323(77)	25(68)	127(69)	74(78)
OW3	794(98)	431(83)	353(77)	191(64)	-64(68)	2(71)
OW4	548(87)	420(82)	724(102)	67(74)	61(74)	13(68)
OW5	901(216)	1687(330)	3753(577)	- 1973(375)	1454(297)	- 880(220)

Anisotrope Temperaturfaktoren von (2)^a

 $^{*}U_{ij}$ in pm²; anisotrope Temperaturfaktoren in der Form

 $T_{\rm an} = \exp[-2\pi^2 \{U_{11}h^2(a^*)^2 + \ldots + 2U_{23}klb^*c^* + \ldots\}]$

z.B. in $(\frac{1}{2}, 0, \frac{1}{2})$, ineinander überführt werden. Die Translationsperiode der Spirale erstreckt sich über die doppelte Gitterkonstante längs [100]. Dies ist in Abb. 5 dargestellt; stellvertretend für die gesamte Baueinheit sind hier nur die Sauerstoffatome der Koordinationswassermoleküle gezeichnet. Die Spiralen werden von weiterem Kristallwasser (OW2 und OW3 bzw. OW5) durch Wasserstoffbrückenbindungen zum Koordinationswasser zu einer

TABELLE 7

Re–Re Re1–Re2	245,5(1)	Re1–Re3	243,3(1)	Re2-Re3	245,9(1)
Re-Cl ^{o,t} Re1-Cl11 Re1-Cl12	232,7(4) 230,5(4)	Re2–Cl27 Re2–Cl22	232,3(5) 229,3(4)	Re3–Cl31 Re3–Cl32	232,5(4) 229,7(4)
Re–I ^{i,b} Re1–I12 Re1–I13	271,8(1) 273,6(1)	Re2–I12 Re2–I23	273,6(2) 274,4(1)	Re3–I13 Re3–I23	275,1(1) 274,1(1)
Re–O ^{i,t} Re1–O1	224(1)	Re2–O2	231(1)	Re3–O3	232(1)
O–Cl ^{o,t} 01–Cl11 01–Cl12	288(1) 286(1)	O2–Cl21 O2–Cl22	291(1) 291(1)	O3Cl31 O3Cl32	293(1) 291(1)
00 01-0W2 02-0W2 03-0W1 03-0W1 03-0W3	278(2) 280(2) 274(2) 288(2) 277(2)	OW1-OW3 OW2-OW3	296(2) 279(2)		
Cl ^{o,t} –Re–Cl ^{o,t} Cl11–Re1–Cl12 Cl21–Re2–Cl22 Cl31–Re3–Cl32		156,2(2) 156,1(2) 156,3(2)	I ^{i,b} –Re–I ^{i,b} I12–Re1–I13 I12–Re2–I23 I13–Re3–I23	3 2 3	172,5(1) 173,9(1) 173,5(1)
Cl ^{o,t} -O-Cl ^{o,t} Cl11-O1-Cl12 Cl21-O2-Cl22 Cl31-O3-Cl32		104,1(4) 101,8(4) 101,5(4)	0W-0-0W 0W1-03-0 0W1-03-0 0W1-03-0	W1 W3 W3	80,7(5) 111,5(6) 101,2(5)
0–0W–0 03–0W1–03 03–0W1–0W3 03–0W1–0W3		96,9(5) 111,5(6) 105,6(5)	01–0W2–03 01–0W2–03 02–0W2–03	2 W3 W3	90,6(5) 113,6(6) 109,8(6)
03–0W3–0W2 03–0W3–0W1 0W2–0W3–0W	/1	118,0(6) 151,0(7) 84,9(5)			

Abstände (pm) und Winkel (grd) in (1)

Raumnetzstruktur verknüpft, vgl. hierzu auch Abb. 4 und bez. der Abstände Tabelle 8.

Trotz mancher struktureller Unterschiede lassen sich die beiden gemischten Halogenid-Hydrate (1) und (2) mit Hilfe der IR-Spektroskopie nicht unterscheiden. Allerdings können den zwei Sorten von Wassermolekülen (Kristall- und Koordinationswasser) deutlich verschiedene Banden für die Valenzschwingungen zugeordnet werden: aufgrund der Ergebnisse für $Cs_{1,5}[Re_3(\mu-I)_3Cl_{7,5}(H_2O)_{1,5}]$ [6], einer Verbindung, die nur Koordinations-

Abstände (p	m) und Winkel	(grd) in (2)			
Re-Re					
Re1–Re2	246,0(1)	Re1-Re3	244,5(1)	Re2–Re3	246,0(1)
Re4–Re5	245,2(1)	Re4-Re6	245,8(1)	Re5–Re6	245,8(1)
Re-Clo,t		$Re-I^{i,b}$		$Re-O^{i,t}$	
Re1-Cl11	231,6(5)	Re1-I12	273,1(1)	Re101	230(1)
Re1-Cl12	230,0(4)	Re1-I13	272,9(1)	Re202	226(1)
Re2Cl21	229,9(4)	Re2-I12	274,8(1)	Re3–O3	239(1)
Re2-Cl22	231,3(4)	Re2–I23	273,9(1)	Re404	228(1)
Re3-Cl31	227,2(4)	Re3-I13	274,0(1)	Re505	231(1)
Re3-Cl32	231,3(4)	Re3-I23	273,4(1)	Re6-06	228(1)
Re4-Cl41	232,0(4)	Re4I45	275,2(1)		
Re4Cl42	230,9(4)	Re4–I46	272,4(1)		
Re5-Cl51	232,1(4)	Re5–I45	273,6(1)		
Re5-Cl52	231,5(4)	Re5–I56	273,2(1)		
Re6-Cl61	230,4(4)	Re6–I46	273,0(1)		
Re6Cl62	231,9(4)	Re6156	273,3(2)		
O-Clo,t		O-OW		OW-OW	
01–Cl11	292(1)	01–0W2	279(2)	OW1-OW1	279(2)
01–Cl12	290(1)	020W1	278(2)	OW1–OW4	279(2)
02–Cl21	292(2)	020W3	312(2)	OW2–OW3	297(2)
O2-C122	286(1)	030W5	274(1) 2×		
03–Cl31	302(1)	040W4	275(2)		
03–Cl32	285(1)	050W2	272(2)		
04–Cl41	291(1)	060W3	273(2)		
04–Cl42	289(1)				
05-CI51	298(1)				
05-0152	286(1)				
06-0161	289(1)				
06-0162	286(1)				
Clo,t-Re-Clo,	t		I ^{i,b} –Re	e—I ^{i,b}	
Cl11_Re1_C	112	156,5(2)	I12-R	le1–I13	172,4(1)
Cl21_Re2_C	122	157,1(1)	I12-R	le2–I23	174,3(1)
Cl31-Re3-C	132	155,4(2)	I13R	le3–I23	173,2(1)
Cl41-Re4-C	2142	156,5(2)	I45-F	le4–I46	173,5(1)
Cl51-Re5-C	2152	156,6(2)	I45–R	le5–156	172,9(1)
Cl61-Re6-C	2162	155,4(1)	146—H	le6–156	173,4(1)
$Cl^{o,t} - O - Cl^{o,t}$			0-0-	-0	
Cl11-O1-Cl	12	102,1(4)	03-0	W5-03	180,0(6)
Cl21_O2_Cl	22	102,8(3)	OW5-	-0302	105,3(4)
Cl31_O3_Cl	32	99,3(3)			
Cl41-04-Cl	42	102,8(3)			
Cl51_05_Cl	152	102,1(4)			
Cl61_06_Cl	62	103,5(3)			

wasser enthält, wird die breite, intensitätsschwache Bande bei 3140 (1) und 3160 (2) cm⁻¹ den Valenzschwingungen des Koordinationswassers zugeordnet. Die entsprechende Bande in $Cs_{1,5}[Re_3(\mu-I)_3Cl_{7,5}(H_2O)_{1,5}]$ ist um 60 cm⁻¹ zu

TABELLE 8

(b)

Abb. 1. Die Anordnung der Baugruppen $[\text{Re}_3(\mu-I)_3\text{Cl}_6(\text{H}_2\text{O})_3]$ relativ zueinander und ihre Verknüpfung über Kristallwasser: oben (a) in (1); unten (b) in (2).

höheren Wellenzahlen verschoben. Dies hängt wohl damit zusammen, daß in den beiden Halogenid-Hydraten zusätzliche Wasserstoffbrückenbindungen zwischen Koordinations- und Kristallwassermolekülen vorhanden sind. Ähnliches findet man auch für $[Re_3Br_9(H_2O)] \cdot H_2O$, wo Zickzack-Ketten doppelt kantenverknüpfter Baugruppen $[Re_3Br_9(H_2O)]$ von Kristallwasser über Wasserstoffbrücken zu Schichten verknüpft vorliegen [5]. Die Valenzschwingungsbande ist hier noch stärker zu tieferen Wellenzahlen verschoben, sie liegt bei 3100 cm⁻¹ [5].

Für die asymmetrische und die symmetrische Valenzschwingung der verschiedenen Kristallwassermoleküle beobachtet man jeweils nur eine breite Bande mittlerer Intensität bei (1) 3530 und 3480 bzw. (2) 3540 und 3480

Abb. 2. Ausschnitt aus der Kristallstruktur von (1) auf (001); die Cl^{o.t}-Liganden sind aus Gründen der besseren Übersicht weggelassen.

cm⁻¹; die Aufspaltung ist allerdings nur schwach ausgeprägt. Die entsprechenden Banden für ReBr₃· 2 H₂O [5] werden bei 3580 und 3500 cm⁻¹ gefunden. Diese Ergebnisse stehen im Einklang mit den röntgenographisch ermittelten Abständen O–OW und OW–OW, die als mittelstarke Wasserstoffbrückenbindungen aufgefaßt werden können. Für die Deformationsschwingung ν_2 , die wenig empfindlich für Wasserstoffbrücken ist, findet man für beide Wassersorten in (1) und (2) nur eine Bande bei 1630 bzw. 1610 cm⁻¹.

Das wasserärmere Hydrat (2) wird nur aus warmer Lösung (ca. 100 °C) erhalten. Dies erscheint vernünftig, da Hochtemperatur-Röntgenaufnahmen zeigen, daß (1) bei 110 °C in (2) übergeht. Sowohl die thermische Analyse als auch die Heizaufnahmen zeigen, daß (2) unter Verlust weiterer Wassermoleküle (die Masseänderung entspricht ca. drei H₂O pro Mol) in ein wasserärmeres Hydrat übergeht. Die Röntgeninterferenzmuster können jedoch keinem der bislang bekannten Halogenid-Hydrate zugeordnet werden. Der weitere thermische Abbau ist kompliziert und noch nicht im Detail geklärt. Offenbar treten hier, im Gegensatz zu "ReCl₃·2H₂O" [1] und ReBr₃· $\frac{2}{3}$ H₂O

Abb. 3. Ausschnitt aus einer Verknüpfungseinheit von Koordinations- (O1-O3) und Kristallwassermolekülen (OW1-OW3) längs [001] in (1).

Abb. 4. Projektion der Kristallstruktur von (2) auf (100): zur besseren Übersicht fehlen die $Cl^{o,t}$ -Liganden.

Abb. 5. Ausschnitt aus der spiralförmigen Verknüpfungseinheit von Koordinations- und Kristallwassermolekülen in (2) längs [100]. Stellvertretend für die molekularen Baugruppen stehen hier die Sauerstoffatome der Koordinationswassermoleküle. Die Translationsperiode der Spirale entspricht der doppelten Gitterkonstanten in a-Richtung.

[5], die sich, ohne zu hydrolisieren oder oxidiert zu werden, zu den binären Halogeniden dehydratysieren lassen, neben dem quasi-binären Re(III)-Halogenid ReICl₂ auch Zersetzungsprodukte auf.

Abschließend sei darauf hingewiesen, daß es sich beim sog. Biltzschen Dihydrat, "ReCl₃·2H₂O" [1], nach Ausweis der Pulveraufnahmen wohl um ein Gemenge zweier Hydrate, ReCl₃·2H₂O und ReCl₃·1 $\frac{1}{8}$ H₂O (isotyp zu (1) bzw. (2)), handelt. Die genaue Auswertung der Pulveraufnahme des Biltzschen Dihydrates ist allerdings schwierig, da sowohl (1) als auch (2) sehr linienreiche Guinieraufnahmen erzeugen.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, Bonn, und dem Verband der Chemischen Industrie, Frankfurt/Main, sowie der Fa. H. C. Starck Berlin, Goslar, für ihre vielfältige und wertvolle Unterstützung.

Literatur

- 1 F. W. Wrigge und W. Biltz, Z. anorg. allg. Chem., 228 (1936) 372.
- 2 M. Irmler und G. Meyer, Z. anorg. allg. Chem., 581 (1990) 104.
- 3 M. Irmler und G. Meyer, Z. anorg. allg. Chem., 552 (1987) 81.

156

- 4 B. Jung, G. Meyer und E. Herdtweck, Z. anorg. allg. Chem., 604 (1991) 27.
- 5 B. Jung und G. Meyer, Z. anorg. allg. Chem., 603 (1991) 49.
- 6 B. Jung, Dissertation, Universität Giessen, 1991.
- 7 J. M. Bennett, F. A. Cotton und B. M. Foxman, Inorg. Chem., 7 (1968) 1563.
- 8 A. Simon, J. Appl. Crystallogr., 3 (1970) 11.
- 9 J. Soose und G. Meyer, SOS, Programm zur Auswertung von Guinier-Aufnahmen, Giessen, 1980.
- 10 W. Clegg, Acta Crystallogr., Sect. A, 37 (1981) 22.
- 11 G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge (U.K.), 1976.
- 12 G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Determination, Göttingen, 1986.
- 13 D. T. Cromer und J. B. Mann, Acta Crystallogr. Sect., A, 24 (1968) 321;
 D. T. Cromer und D. Liberman, J. Chem. Phys., 53 (1970) 1891.
- 14 B. Jung und G. Meyer, Z. anorg. allg. Chem., 595 (1991) 143.